Que	estion	Scheme	Marks	AOs
1	.(a)	Mass ratios: $14r$, πr , $14r + \pi r$	B1	1.2
		Distances: $7r$, $\frac{2r}{\pi}$, \bar{x}	B1	1.2
		Moments equation about AB	M1	3.1b
		$14r \times 7r - \pi r \times \frac{2r}{\pi} = (14r + \pi r)\overline{x}$	A1	1.1b
		$\overline{x} = \frac{96r}{\left(14 + \pi\right)}$	A1	1.1b
			(5)	
(b) $\tan \theta = \frac{1}{2}$		$\tan \theta = \frac{\left(\frac{\pi r}{14 + \pi}\right)}{(14r - \overline{x})}$	M1	3.1b
		$\theta = 1.25^{\circ} \text{ (3 SF)}$	A1	1.1b
			(2)	
			(7 n	narks)
Not	es:			
1a	B1	Mass ratios correct		
	B1	Distances could be measured from a parallel axis		
	M1	All terms needed and must be dimensionally correct		
	A1	Correct equation (possibly for a parallel axis)		
	A1	cao (must be in terms of π and r)		
1b	M1	Allow the reciprocal		
	A1	cso (from 1.249955)		

Que	stion	Scheme	Marks	AOs
2	(a)	$\frac{\mathrm{d}v}{\mathrm{d}t} = v - \frac{1}{10}v^2$	M1	2.5
		$\int \frac{10 dv}{v(10-v)} = \int dt \Longrightarrow \int \frac{1}{v} + \frac{1}{10-v} dv = t$	M1	2.1
		$\ln v - \ln(10 - v) = t + (C)$	A1	1.1b
		Use of initial conditions or appropriate limits, and solve for <i>v</i>	M1	2.1
		$v = \frac{20e^t}{2e^t + 3} *$	A1*	1.1b
			(5)	
2	2(b) $\frac{dx}{dt} = \frac{20e^t}{2e^t + 3} \implies x = \int \frac{20e^t}{2e^t + 3} dt$ $\mathbf{OR} v \frac{dv}{dx} = v - \frac{1}{10}v^2 \implies x = \int \frac{10}{(10 - v)} dv$		M1	2.5
		$x = 10 \ln(2e^{t} + 3)$ (+C) OR $x = -10 \ln(10 - v)$ (+D)	A1	1.1b
		Use of initial conditions or appropriate limits to find <i>x</i>	M1	2.1
		$10\ln\left(\frac{3+2e}{5}\right)*$	A1*	1.1b
			(4)	
			(9 n	narks)
Note	es:			
2a	M1	Choosing appropriate derivative form for <i>a</i>		
	M1	Separate variables and split into partial fractions		
	A1	Correct equation (C not needed)		
	M1	Using initial conditions to find a value for C and inserting into expressubstituting in limits if using a definite integral and solve for V	ssion or	
	A1*	Correct derivation of given answer		
2b	M1	Attempt to integrate wrt t or v		
	A1	Correct equation (C or D not needed)		
	M1	Using initial conditions to find a value for <i>C</i> or <i>D</i> and inserting into e substituting in limits if using a definite integral	expression or	-
	A1*	Correct derivation of given answer		

Que	stion	Scheme	Marks	AOs
3	(a)	Use of a semicircular element	M1	2.1
		$\delta A \simeq \pi x \delta x$	A1	1.1b
		$\delta m \simeq \pi x \delta x \times kx \ (= \pi k x^2 \delta x)$	M1	2.1
		$M = \int_0^a \pi k x^2 \mathrm{d}x$	M1	2.1
		$k = \frac{3M}{\pi a^3} *$	A1*	1.1b
			(5)	
3	(b)	Use of $\bar{x} = \frac{1}{M} \int x dm$	M1	3.4
		$=\frac{1}{M}\int_0^a \frac{2x}{\pi}\pi kx^2 \mathrm{d}x$	A1	1.1b
		Substitute for <i>M</i> or <i>k</i> and integrate	M1	3.4
		$\overline{x} = \frac{3a}{2\pi}$	A1	1.1b
			(4)	
			(9 n	narks)
Note	es:			
3a	M1	Use of appropriate element (may be implied)		
	A1	Correct expression for area of element (may be implied)		
	M1	Use of proportionality		
	M1	Integrating with correct limits		
	A1*	GIVEN ANSWER		
3b	M1	Use the model with correct general formula		
	A1	Correct integral		
	M1	Use the model to complete the equation		
	A1	cao		

Question	Scheme	Marks	AOs
		4	4

4(a)	Resolving vertically	M1	2.1
	$T\cos\theta = mg$	A1	1.1b
	Equation of motion horizontally	M1	2.1
	$T\sin\theta = m(a+x)\omega^2\sin\theta$	A1	1.1b
	$T \sin \theta = m(\alpha + x) \cos \theta$	A1	1.1b
	Use of Hooke's Law	M1	1.1b
	$T = \frac{kmgx}{a}$	A1	1.1b
	Overall strategy to solve problem by eliminating T	DM1	3.1a
	and x and solving for $\cos \theta$	DM1	3.1a
	$\cos\theta = \frac{(kg - a\omega^2)}{ka\omega^2} *$	A1*	2.2a
		(10)	
4(b)	$\theta < 90^{\circ} \Rightarrow \cos \theta > 0 \Rightarrow \cos \theta = \frac{(kg - a\omega^2)}{ka\omega^2} > 0$	M1	2.1
	$\omega < \sqrt{\frac{kg}{a}} *$	A1*	1.1b
		(2)	

(12 marks)

Not	Notes:		
4a	M1	Correct no. of terms with T resolved	
	A1	Correct equation	
	M1	Correct no. of terms with T resolved and correct acceleration component	
	A1	Correct equation with at most one error	
	A1	Correct equation	
	M1	Use of Hooke's Law	
	A1	Correct expression	
	DM1	Dependent on previous 3 M marks	
	DM1	Dependent on previous M mark	
	A1*	GIVEN ANSWER	
4b	M1	Clear argument	
	A1*	GIVEN ANSWER	

Que	estion	Scheme	Marks	AOs
5	5(a)	Equation of motion along string when string goes slack	M1	3.1b
		$mg\cos\alpha = \frac{mv^2}{a}$	A1	1.1b
		Conservation of energy	M1	3.1b
		$\left \frac{1}{2} m \left(\frac{22ag}{5} - v^2 \right) \right = mga(1 + \cos \alpha)$	A1	1.1b
		Overall strategy to use the equations to eliminate $\cos \alpha$ and solve for	A1	1.1b
		v	M1	3.1b
		$v = \sqrt{\frac{4ag}{5}} *$	A1*	1.1b
			(7)	
5	5(b)	Only force acting is mg downwards on (e.g. $mg = ma$)	B1	2.4
		g, vertically downwards	B1	1.1b
			(2)	
5	5(c)	Conservation of energy	M1	3.1b
		$\frac{1}{2}m\left(w^2 - \frac{4ag}{5}\right) = mga \times \frac{4}{5}$	A1	1.1b
		$w = \sqrt{\frac{12ag}{5}}$	A1	1.1b
		ALTERNATIVE		
		Conservation of energy	M1	3.1b
		$\frac{1}{2}m\left(\frac{22ag}{5}-w^2\right)=mga$	A1	1.1b
		$w = \sqrt{\frac{12ag}{5}}$	A1	1.1b
			(3)	
5	5(d)	There would be some air resistance on the stone	B1	3.5b
			(1)	
			(13 n	narks)
Not	es:			
5a	M1	Correct no. of terms with mg resolved and correct acceleration compon	ent	
	A1	Correct equation		

	M1	All terms needed and dimensionally correct
	A1	Correct equation with at most one error
	A1	Correct equation
	M1	Eliminate $\cos \alpha$
	A1*	GIVEN ANSWER
5b	M1	Clear explanation
	B1	cao
5c	M1	All terms needed and dimensionally correct
	A1	Correct equation
	A1	cao
5d	B1	Penalise extra wrong answers

Question	Scheme	Marks	AOs
6(a)(i)	$T_1 = mg + T_2$	M1	2.1
	Use of Hooke's Law to give equation in one unknown	M1	3.1a
	$\frac{\lambda e}{l} = mg + \frac{3\lambda(2l - e)}{l}$	A1	1.1b
	$AO = l + e = l + \frac{l}{4\lambda}(mg + 6\lambda) = \frac{l(10\lambda + mg)}{4\lambda} *$	A1*	1.1b
		(4)	
(ii)	Use of $AO < 3l$, $\frac{l(10\lambda + mg)}{4\lambda} < 3l$	M1	3.1a

		(15 1	mark
		(3)	
	$U = 3\sqrt{\frac{gl}{8}}$	A1	1.1
	Use of $a \leqslant \frac{3l}{8} \Rightarrow U\sqrt{\frac{l}{8g}} \leqslant \frac{3l}{8}$	M1	3.1
6(c)	$U = a\sqrt{\frac{8g}{l}} \Rightarrow a = U\sqrt{\frac{l}{8g}}$	B1	1.1
		(6)	
	Period = $\frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{8g}}$ *	A1*	2.2
	$-\frac{8g}{l}x = \ddot{x} \text{ so SHM with } \omega^2 = \frac{8g}{l}$	M1	3.1
	$\frac{2mg}{l}\left(\frac{13l}{8} - x\right) - \frac{6mg}{l}\left(\frac{3l}{8} + x\right) - mg = m\ddot{x}$	A1	1.1
	Equation of motion for <i>P</i> when a distance <i>x</i> from <i>O</i> , towards <i>A</i> $T_1 - mg - T_2 = m\ddot{x}$ $2mg(12l_1) - 6mg(2l_2)$	M1	3.1
6(b)	$\lambda = 2mg \Rightarrow AO = \frac{21l}{8}$	B1	1.1
		(2)	
	$\frac{1}{2}mg < \lambda$ so least possible value of $k = \frac{1}{2}$	A1	1.1

M1	All 3 terms needed
M1	Use of Hooke's Law to solve the problem
A 1	Correct equation
A1*	GIVEN ANSWER
M1	Using fact that bottom string is stretched
A 1	cao
B1	cao
M1	All terms needed
A 1	Correct equation with at most one error
A 1	Correct unsimplified equation
A 1	Correct simplified equation with conclusion
A1*	GIVEN ANSWER
	M1 A1* M1 A1 B1 M1 A1 A1 A1

6c	B1	cao
	M1	Correct method
	A1	cao

Questio	Scheme	Marks	AOs
7(a)	Mass ratios: $\frac{2\pi a^3 k \rho}{3}$, $2\pi a^3 \rho$, $\frac{\pi a^3 \rho}{3}$ (hemisphere, cylinder, cone)	B1	1.2
	Distances from base : $\frac{5a}{8}$, $2a$, $\frac{13a}{4}$ (hemisphere, cylinder, cone)	B1	1.2
	Moments equation (about base)	M1	3.1a
	$\left(\frac{2\pi a^3 k \rho}{3} \times \frac{5a}{8}\right) + \left(2\pi a^3 \rho \times 2a\right) + \left(\frac{\pi a^3 \rho}{3} \times \frac{13a}{4}\right)$ $= \left(\frac{2\pi a^3 k \rho}{3} + 2\pi a^3 \rho + \frac{\pi a^3 \rho}{3}\right) \overline{x}$	A1	1.1b
	$\overline{x} = \frac{a(5k+61)}{(8k+28)}$ oe	A1	1.1b
	Use of appropriate inequality, $\bar{x} < a$ to solve the problem	M1	3.1a
	k > 11*	A1*	1.1b
		(7)	
7(b)	When $k = 11$, $\bar{x} = a$ i.e. c of m is at centre of hemisphere	B1	3.2a
	Weight acts through pt. of contact with plane	B1	2.2a
	Moments about pt. of contact => does not move oe	B1	2.2a
		(3)	
		(10 n	narks)
Notes:			
7a B1	Correct mass ratios		
B1	Correct distances		
M	All four terms, dimensionally correct. May use a parallel axis		
A1	Correct unsimplified equation with at most one error		
A1	Correct unsimplified expression for \bar{x}		
M	Correct for their \bar{x}		
A1	* GIVEN ANSWER correctly obtained		
7b B1	Clear explanation		

B1	Clear explanation
B1	Clear explanation and conclusion